



## MASTER DEGREE ENGINEERING FOR THE ENERGY TRANSITION CLASS LM-24 AND LM-30 R PLAN OF STUDY Academic Year 2025 - 2026

The Engineering for the Energy Transition Master's Degree Program has two curricula:

- Sustainable Building Design and Technology
- Sustainable Industrial Systems

The courses are classified based as follows (type of educational activity, "TAF"):

TAF A = base courses

TAF B = characterizing courses

TAF C = complementary courses

TAF D = elective courses

TAF E = final thesis

TAF F = other activities

| Curriculum "Sustai                                                                   | nable Building Design and T                                                            | echnolo | ogy"                          |                |        |
|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|---------|-------------------------------|----------------|--------|
| 1 <sup>st</sup>                                                                      | Year – 54 credits ("CFU")                                                              |         |                               |                |        |
| Course                                                                               | Modules                                                                                | Code    | Disciplinary<br>Area<br>"SSD" | TAF<br>LM24/30 | CFU    |
| Fundamentals of the Energy Sector and<br>Renewables                                  | Fundamentals of the Energy Sector<br>Renewable Energy Technologies                     |         | ING-IND/09<br>ING-IND/09      | C/B<br>C/B     | 3<br>6 |
| Industrial Energy Management                                                         |                                                                                        |         | ING-IND/08                    | C/B            | 6      |
| Economics, Evaluations, Legislation,<br>and Social Aspects for the Energy Transition | Environmental Economics                                                                |         | SECS-P/06                     | B/C            | 3      |
|                                                                                      | Economic Evaluation of Projects<br>for the Energy Transition                           |         | ICAR/22                       | B/C            | 3      |
|                                                                                      | Legislation and Social Change                                                          |         | IUS/10                        | B/C            | 3      |
| Fundamentals of modern Power Systems                                                 |                                                                                        |         | ING-IND/33                    | B/B            | 9      |
| Building HVAC Systems                                                                | HVAC System Design                                                                     |         | ING-IND/10                    | B/B            | 6      |
| <b>o</b> ,                                                                           | HVAC Load Calculation                                                                  |         | ING-IND/10                    | B/B            | 3      |
| Environmental Hydraulics: Pollutants, Emissions and Global Warming                   |                                                                                        |         | ICAR/01                       | B/C            | 6      |
| Elective Courses                                                                     |                                                                                        |         |                               | D/D            | 6      |
|                                                                                      | 2 <sup>nd</sup> Year – 66 credits ("CFU")                                              |         |                               |                |        |
| Course                                                                               | Modules                                                                                | Code    | Disciplinary<br>Area<br>"SSD" | TAF            | CFU    |
| Building Envelopes and Structural Integration                                        | Technologies for Building Skins                                                        |         | ICAR/10                       | B/C            | 3      |
|                                                                                      | Structural Design                                                                      |         | ICAR/09                       | B/C            | 9      |
| Materials and Systems for the Energy Transition                                      | Materials for the Energy Transition<br>Electrical Systems for the Energy<br>Transition |         | ING-IND/22<br>ING-IND/31      | C/C<br>B/C     | 3<br>3 |
| Photovoltaics and E-Mobility                                                         | Photovoltaic Systems                                                                   |         | ING-IND/31                    | B/C            | 3      |
|                                                                                      | E-Mobility                                                                             |         | ING-IND/32                    | C/B            | 3      |
| Integrated Ecosystem Design                                                          | Regenerative and Smart Building<br>Technologies                                        |         | ICAR/10                       | B/C            | 6      |
|                                                                                      | Regulatory Framework and Building<br>Energy Design                                     |         | ING-IND/10                    | B/B            | 3      |
|                                                                                      | Informative 3D Modeling for Project<br>Design and Management                           |         | ICAR/17                       | B/C            | 3      |
| Building Energy Simulation                                                           | -                                                                                      |         | ING-IND/10                    | B/B            | 6      |
| Elective Courses                                                                     |                                                                                        |         |                               | D/D            | 6      |
| Other Activities                                                                     |                                                                                        |         |                               | F/F            | 6      |
| Final Thesis                                                                         |                                                                                        |         |                               | E/E            | 12     |





|                                                                    | "Sustainable Industrial Sys                         | stems" |                               |                |     |
|--------------------------------------------------------------------|-----------------------------------------------------|--------|-------------------------------|----------------|-----|
| Course                                                             | * <sup>t</sup> Year – 63 credits ("CFU")<br>Modules | Code   | Disciplinary<br>Area<br>"SSD" | TAF<br>LM24/30 | CFU |
| Fundamentals of the Energy Sector,                                 | Fundamentals of the Energy Sector                   |        | ING-IND/09                    | C/B            | 3   |
|                                                                    | Renewable Energy Technologies                       |        | ING-IND/09                    | C/B            | 6   |
| Renewables and Energy Systems                                      | Elements of Fluidmachinery and<br>Energy Systems    |        | ING-IND/09                    | C/B            | 6   |
| Industrial Energy Management                                       |                                                     |        | ING-IND/08                    | C/B            | 6   |
| Economics and Evaluations for the Energy                           | Environmental Economics                             |        | SECS-P/06                     | B/C            | 3   |
| Transition                                                         | Economic Evaluation of Industrial<br>Projects       |        | ING-IND/10                    | B/B            | 3   |
| Fundamentals of modern Power Systems                               |                                                     |        | ING-IND/33                    | B/B            | 9   |
| Design and Simulation of HVAC Systems                              | HVAC System Design                                  |        | ING-IND/10                    | B/B            | 6   |
|                                                                    | HVAC Load Calculation                               |        | ING-IND/10                    | B/B            | 3   |
|                                                                    | Introduction to Computational<br>Fluid Dynamics     |        | ING-IND/10                    | B/B            | 3   |
| Environmental Hydraulics: Pollutants, Emissions and Global Warming |                                                     |        | ICAR/01                       | B/C            | 6   |
| Elective Course                                                    |                                                     |        |                               | D/D            | 9   |
|                                                                    | 2 <sup>nd</sup> Year – 57 credits ("CFU'            | ')     |                               |                |     |
| Course                                                             | Modules                                             | Code   | Disciplinary<br>Area<br>"SSD" | TAF            | CFU |
| Alternative Energy Technologies 1                                  | Electrical Energy Storage                           |        | ING-IND/31                    | B/C            | 3   |
|                                                                    | Materials for the Energy Transition                 |        | ING-IND/22                    | C/C            | 3   |
|                                                                    | Electrical Systems for the Energy<br>Transition     |        | ING-IND/31                    | B/C            | 3   |
| Alternative Energy Technologies 2                                  | Wind Energy and Fundamentals<br>of Nuclear Energy   |        | ICAR/08                       | B/C            | 3   |
|                                                                    | Wave and Tidal Power Plants                         |        | ICAR/01                       | B/C            | 3   |
|                                                                    | Hydrogen and Fuel Cells                             |        | ING-IND/08                    | C/B            | 6   |
| Integrated Spatial and Energy Planning                             | Spatial Planning<br>for Photovoltaic Systems        |        | ICAR/20                       | B/C            | 3   |
|                                                                    | E-Mobility                                          |        | ING-IND/32                    | C/B            | 3   |
| Design for Sustainability of Products and Processes                | Design for sustainability<br>of processes and LCA   |        | ING-IND/24                    | C/C            | 3   |
|                                                                    | Sustainable materials: selection and design         |        | ING-IND/22                    | C/C            | 3   |
|                                                                    | Electricity Market Modeling                         |        | ING-IND/31                    | B/C            | 3   |
| Models and Data for the Electricity Market                         | Data Analytics in the Electricity<br>Market         |        | ING-IND/33                    | B/B            | 3   |
| Other Activities                                                   |                                                     |        |                               | F/F            | 6   |
| Final Thesis                                                       |                                                     |        |                               | E/E            | 12  |

In the study plan, students must register for elective courses (TAF D). **Students enrolled in one curriculum can also choose any elective course from the other curriculum without requiring approval.** Moreover, all courses listed in the table below do not require approval; students can add them directly through the online system "esse3". Students may propose other elective courses, but these are subject to approval. However, students cannot enroll in an elective course if they have already taken the same or equivalent exam in previous courses of study.





|                                                                           | ELECTIVE COURSES                                              |      | Disciplinary  |     |     |
|---------------------------------------------------------------------------|---------------------------------------------------------------|------|---------------|-----|-----|
| Course                                                                    | Modules                                                       | Code | Area<br>"SSD" | TAF | CFL |
| Fenomeni di trasporto                                                     |                                                               |      | ING-IND/24    | D   | 9   |
| Computational Fluid Dynamics and Heat<br>Transfer                         | Introduction to Computational Fluid<br>Dynamics               |      | ING-IND/10    | D   | 3   |
|                                                                           | Computational Methods for Fluid<br>Dynamics and Heat Transfer |      | ING-IND/10    | D   | 6   |
| Fondamenti e Metodi per la progettazione                                  |                                                               |      | ING-IND/08    | D   | 6   |
| Control Theory                                                            |                                                               |      | ING-INF/04    | D   | 9   |
| Embedded Systems                                                          |                                                               |      | ING-INF/01    | D   | 6   |
| Entrepreneurship & Business Modelling                                     |                                                               |      | SECS-P/08     | D   | 9   |
| Mathematical Optimization                                                 |                                                               |      | MAT/09        | D   | 6   |
| GIS (Geographic Information Systems);                                     |                                                               |      | ICAR/06       | D   | 6   |
| Strategic and Critical Materials                                          | Strategic and Critical Raw Materials                          |      | CHIM/07       | D   | 3   |
|                                                                           | Substitution of Critical Materials                            |      | ING-IND/22    | D   | 3   |
| Water waves and shore protection                                          |                                                               |      | ICAR/01       | D   | 3   |
| Meccanica avanzata e dinamica delle strutture                             |                                                               |      | ICAR/08       | D   | 6   |
| Computational structural mechanics                                        |                                                               |      | ICAR/08       | D   | 3   |
| Analisi multidisciplinare, progetto e ottimizzazione di sistemi complessi |                                                               |      | ING-IND/08    | D   | 3   |
| Manutenzione e simulazione degli impianti industriali                     |                                                               |      | ING-IND/17    | D   | 6   |
| Impianti di abbattimento delle emissioni                                  |                                                               |      | ING-IND/17    | D   | 6   |
| Battery management systems                                                |                                                               |      | ING-INF/04    | D   | 9   |

## **EVALUATION**

The level of knowledge will be evaluated by oral and/or written exams, as detailed by each instructor in the syllabus and at the beginning of the course.

## FURTHER INFORMATION

- The master degree ("Laurea magistrale") in Engineering for the Energy Transition is an interclass degree ("corso di Laurea interclasse"), i.e. it can be conferred in one of two different "degree classes" of the Italian system ("classi di laurea"): either Building Systems Engineering (LM-24), or Energy and Nuclear Engineering (LM-30). The student is required to choose the degree class before the beginning of the second year;
- 2. Courses marked as "TAF B/C" are "characterizing" for one class and "complementary" for the other;
- 3. The final thesis consists in an original and independent work in the field of building systems and/or of energy engineering. It can take the form of an extensive analysis of the scientific literature on a current relevant topic, or a design project, or a research project based on experiments, theory, or computational simulation. The work can be carried out entirely at the University of Trieste and/or in collaboration with other universities, research centers, and industries both domestic and international.